Analysis of Optimization Algorithms via Integral Quadratic Constraints: Nonstrongly Convex Problems
نویسندگان
چکیده
منابع مشابه
Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints
This manuscript develops a new framework to analyze and design iterative optimization algorithms built on the notion of Integral Quadratic Constraints (IQC) from robust control theory. IQCs provide sufficient conditions for the stability of complicated interconnected systems, and these conditions can be checked by semidefinite programming. We discuss how to adapt IQC theory to study optimizatio...
متن کاملSystem Analysis via Integral Quadratic Constraints
This paper introduces a unified approach to robustness analysis with respect to nonlinearities, time variations, and uncertain parameters. From an original idea by Yakubovich, the approach has been developed under a combination of influences from the Western and Russian traditions of control theory. It is shown how a complex system can be described, using integral quadratic constraints (IQC’s) ...
متن کاملExponential Stability Analysis via Integral Quadratic Constraints
The theory of integral quadratic constraints (IQCs) allows verification of stability and gain-bound properties of systems containing nonlinear or uncertain elements. Gain bounds often imply exponential stability, but it can be challenging to compute useful numerical bounds on the exponential decay rate. This work presents a generalization of the classical IQC results of Megretski and Rantzer [1...
متن کاملApproximating Global Quadratic Optimization with Convex Quadratic Constraints
We consider the problem of approximating the global maximum of a quadratic program (QP) subject to convex non-homogeneous quadratic constraints. We prove an approximation quality bound that is related to a condition number of the convex feasible set; and it is the currently best for approximating certain problems, such as quadratic optimization over the assignment polytope, according to the bes...
متن کاملTwo-Level Optimization Problems with Infinite Number of Convex Lower Level Constraints
This paper proposes a new form of optimization problem which is a two-level programming problem with infinitely many lower level constraints. Firstly, we consider some lower level constraint qualifications (CQs) for this problem. Then, under these CQs, we derive formula for estimating the subdifferential of its valued function. Finally, we present some necessary optimality condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Optimization
سال: 2018
ISSN: 1052-6234,1095-7189
DOI: 10.1137/17m1136845